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Abstract

We present a new approach for the computation of shape sensitivities using the discrete adjoint and flow-sensitivity
methods on Cartesian meshes with general polyhedral cells (cut-cells) at the wall boundaries. By directly linearizing geo-
metric constructors of the cut-cells, an efficient and robust computation of shape sensitivities is achieved for problems gov-
erned by the Euler equations. The accuracy of the linearization is verified by the use of a model problem with an exact
solution. Verification studies show that the convergence rate of gradients is second-order for design variables that do
not alter the boundary shape, and is reduced to first-order for shape design problems. The approach is applied to several
three-dimensional problems, including inverse design and shape optimization of a re-entry capsule in hypersonic flow. The
results show that reliable approximations of the gradient are obtained in all cases. The approach is well-suited for geometry
control via computer-aided design, and is especially effective for conceptual design studies with complex geometry where
fast turn-around time is required.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

An important factor in the application of numerical optimization as a practical tool of acrodynamic design
is the need to handle complex geometry problems in an automatic fashion. Each iteration of a typical optimi-
zation procedure requires a new analysis of the evolving geometry. This involves the sequence of re-meshing
the computational domain and re-solving the flow equations. In this setting, automatic mesh generation is
essential. Most approaches rely on interactive mesh generation to create an initial mesh, and then use a
mesh-perturbation scheme to deform that mesh as the surface geometry changes. A promising alternative is
offered by embedded-boundary Cartesian mesh methods [8,2,9]. These methods provide fast and robust mesh
generation that is insensitive to the complexity of the surface shape. In this work, we combine the automation
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capabilities of Cartesian methods with efficient approaches for sensitivity analysis to accelerate the conver-
gence of the optimization procedure.

Many examples are available in the literature that demonstrate the effectiveness of Cartesian methods for a
variety of optimization algorithms. Cliff et al. [7] use gradient methods, Rodriguez [37] uses a simplex method,
Keane [22] proposes the use of response surfaces, and Nelson et al. [29] investigate the use of genetic algo-
rithms. In these studies, the computation of the objective function gradient, or sensitivity analysis, was either
not required or performed with finite-difference approximations. As the complexity of optimization problems
increases, for example by considering more design variables, objective functions and constraints, the dominant
issue becomes computational cost. Efficient techniques for reducing the computational cost are the adjoint and
flow-sensitivity methods [19,4,27]. The cost of gradient computations using the adjoint method is essentially
independent of the number of design variables. Conversely, the flow-sensitivity method is attractive for prob-
lems with many objectives or flow-dependent constraints. The resulting sensitivity information is useful for not
only gradient-based methods, but also convergence acceleration of response surface methods and genetic
algorithms.

The formulation of the adjoint and flow-sensitivity methods requires a complete linearization of the gov-
erning equations with respect to the design variables. This includes the objective function, flow equations,
and the relations used to define the boundary shape. Detailed overviews are presented by Jameson [20] and
Giles and Pierce [15]. The most relevant aspect in the present context is the effect of boundary shape variations
in the linearization of the flow equations. This typically involves the linearization of a mesh-perturbation
scheme, such as spring-analogy or linear-elasticity methods on unstructured meshes [33,43,13] and algebraic
node-redistribution functions on structured meshes [36,23]. The linearization introduces an additional adjoint
equation in the optimization procedure [35,26,41]; however, the mesh-perturbation scheme provides a smooth
mapping that reduces the influence of truncation errors on the gradient computation. While this approach is
well understood for implementations in conjunction with body-fitted meshes, a different approach is required
for non-body-fitted Cartesian meshes. This is due to the layer of irregular cells, or cut-cells, adjacent to the
boundary, that changes arbitrarily for each instance of the geometry. Similar problems also arise for shape
topology changes and implementations in conjunction with solution-based mesh adaptation.

One approach is to avoid mesh-perturbation schemes altogether. A good example is the Cartesian TRA-
NAIR code [44], which is based on the full-potential equation with viscous corrections. In this approach, Huff-
man et al. [18] developed and linearized a transpiration boundary condition to approximate the effects of the
changing boundary surface. They obtained good gradient accuracy for problems where the design variables
involve shape changes normal to the surface. The optimization procedure involves the solution of a sequence
of subproblems with a periodic re-meshing of the geometry. More recently, Duvigneau and Pelletier [12] intro-
duced a continuous formulation that uses higher-order Taylor series approximations near the boundary to
obtain accurate shape sensitivities for two-dimensional problems.

A different strategy is motivated by studies on unstructured meshes that investigate the extent of mesh per-
turbations (in the wall-normal direction) required for accurate gradients. Anderson and Venkatakrishnan [3]
and Lu [24] restricted the mesh perturbations to just the surface boundary cells, with all interior cells held
fixed. The results show that for local shape deformations, away from singularities, reliable approximations
of the gradient can be obtained. A similar approach was presented by Dadone and Grossman [10] on Carte-
sian meshes for the two-dimensional Euler equations. This work used an immersed-boundary methodology to
apply finite-difference approximations for shape sensitivities in the boundary intersecting cells. Perturbations
of only the boundary cells were also considered by Jameson and Kim [21], who introduced a reduced gradient
approach for the continuous adjoint formulation on structured grids. Their results indicate that for shape
optimization governed by the Euler equations, the reduced approach is accurate and provides significant com-
putational savings. Similar results are also presented by Soto and Lohner [39] on unstructured meshes.

In this work, we propose an automatic and efficient method for the computation of shape sensitivities on
non-body-fitted Cartesian meshes. Our approach is similar to a mesh-perturbation scheme where the pertur-
bations are restricted to the boundary cells. The key difference is that we maintain the orientation of the Carte-
sian-aligned faces of the cut-cells as the boundary surface evolves. The linearization of the geometric terms at
the surface boundary is obtained directly from the geometry constructors of the mesh generator. In the line-
arization, no assumptions are made regarding the connectivity of the surface triangulation with the volume
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mesh. As a result, our approach offers a flexible interface for geometry manipulation, which may include para-
metric computer-aided design (CAD) and in-house geometry modelers. Furthermore, the new approach is
inexpensive, since it does not require the solution of an additional adjoint equation, and it may be applicable
to a broader range of problems than schemes based on the transpiration boundary condition.

To assess the accuracy of the computed gradients, we present detailed verification studies using compari-
sons with analytic model problems and finite-difference approximations. Thereafter, we investigate the perfor-
mance of the new method on two representative shape-optimization problems, namely, inverse design and an
enhancement of the lift-to-drag ratio for an Apollo-like re-entry capsule in hypersonic flow. Factors under
consideration include robustness of the adjoint and flow-sensitivity solvers, and efficiency of the gradient com-
putation. In addition, the design examples are also used to highlight the capability of the method to use var-
ious geometry modeling and manipulation tools, including a direct-CAD interface for the capsule problem
and an analytic B-spline approach for the inverse design problem.

2. Optimization problem

The aerodynamic optimization problem we consider in this work consists of determining values of design
variables, X, that minimize a given objective function

min  J(X,0) 1)

where J represents a scalar objective function defined by a surface integral, for example lift or drag, and
0 = [p, pu, pv, pw, pE]T are the continuous flow variables. The variables are forced to satisfy the flow equa-
tions within a feasible region of the design space Q

FX,0)=0 ¥XeQ (2)

which implicitly defines Q = f(X). We use a discrete formulation to compute the objective function gradient
dJ/dX, where the governing equations, Eqgs. (1) and (2), are first discretized and then differentiated. In the
following section, we present background information on the Cartesian mesh generator and the flow solution
method to help anchor the subsequent discussion on linearization.

3. Flow equations and numerical method

The governing flow equations are the three-dimensional Euler equations of a perfect gas. For a finite region
of space with volume V" and surface area S, the equations are given by

%/VQdV+j£F-ﬁdS:0 (3)

where F is the inviscid flux tensor and i is the outward facing unit normal vector.! The equations are discret-
ized on a multilevel Cartesian mesh with embedded boundaries. The mesh consists of regular Cartesian hexa-
hedra everywhere, except for a layer of body-intersecting cells, or cut-cells, adjacent to the body surface. As
illustrated in Figs. 1 and 2, these cells are polyhedra of arbitrary degree. Spatial discretization uses a cell-cen-
tered approach, where the control volumes correspond to the mesh cells and the cell-averaged value of Q, de-
noted by O, is located at the centroid of each cell. We consider steady-state problems and write the resulting
discrete system of equations as

R(D.4.x) = 0 @
where O = [0, 05, ..., 0x|" is the discrete solution vector for all N cells of a given mesh A7. The flux residual
in each cell i is expressed as

R, =Y (H-iS), (5)

JEVi

! Bold type denotes Cartesian vectors.
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Fig. 1. Multilevel Cartesian mesh in two-dimensions with a cut-cell boundary.

Fig. 2. Cut-cell geometry for surface triangulation (7) with triangle—polygons (zp) and face-polygons (fp).

where j denotes the faces of control volume V; with area S, and H represents the numerical flux function. The
flux function is evaluated at the face centroids using the flux—vector splitting approach of van Leer [42]. Prim-
itive variables, U = [p, u, v, w, p]T, are used for the reconstruction of the solution to the common face between
adjacent cells, such that H = H(Uy, Ug). This is illustrated in Fig. 1 for two neighboring Cartesian cells. The
left state is given by

Upo=U;+d.¢,VU; (6)

where d is a vector from the cell centroid to the face centroid, ¢ is a matrix of slope limiter values used to
ensure monotonic reconstructions, and VU is the solution gradient determined via a linear least-squares pro-
cedure. A similar expression is used for the right state. The wall-boundary conditions are enforced weakly
using pressure from interior cells in the momentum equations.

The evaluation of mesh dependent terms in Egs. (5) and (6), such as areas, normals and centroids, is
straightforward for regular Cartesian cells. Our focus is on the cut-cells, because an infinitesimal perturbation
of the boundary shape affects only these cells in the mesh. The cut-cell geometry is defined by the intersection
of the surface triangulation with the faces of Cartesian hexahedra. Fig. 2 labels two main geometry features in
a generic cut-cell, namely, triangle- and face-polygons. Triangle-polygons are formed from the portions of tri-
angles that lie within the cell. Face-polygons are formed from the Cartesian aligned faces of the cell after being
trimmed by the triangulation. A specific example is shown in Fig. 3, where a Cartesian hexahedron is split into
two cut-cells by the surface triangulation. We describe the construction of the polygon (A, B, C, D) for triangle
(Vo,V1,V,). We require the location of intersection points that lie on Cartesian edges, e.g. point A, and also
those that lie on triangle edges, e.g. point D. Focusing on point D, its location along the triangle edge V,V, is
given by

D= V() + S(V] — V()) (7)

where s denotes the distance fraction of the face location relative to the vertices Vo and V. A similar construc-
tor is used for points along Cartesian edges that pierce the surface triangulation, such as point A [30]. The
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Fig. 3. Intersection of a Cartesian hexahedron with triangle (Vo, Vi, V,) creates pierce points (A, B, C,D) that form a triangle-polygon
with a surface centroid E.

computation of areas and centroids for the face-polygons is accomplished by subdividing each face into tri-
angle “fans” that are defined by the pierce points and the corners of the hexahedron. The computation of vol-
ume centroids uses the divergence theorem and involves integrating over the triangle- and face-polygons of the
cut-cell.

The geometric information required for the implementation of wall boundary conditions consists of the
wall normal, the area of the surface patch within the cut-cell and the surface centroid. We consider two
approaches for the representation of the wall boundary. In the first approach, the computation of the wall
normal is based on a planar approximation to the variation of the triangulation within each cell. This agglom-
erated normal vector is computed by requiring the geometric closure of each cut-cell

D SRy =0 (8)

JEVi

where the sum is performed over the faces j of the cell. In the second approach, the boundary conditions are
enforced for each triangle—polygon of the cut-cell, which provides a ““sub-cell” description of the boundary.
Referring to Fig. 3, the flow solution is reconstructed to the triangle—polygon centroid, point E, and the wall
unit normal is inherited from the parent triangle.

Steady-state flow solutions are obtained using a five-stage Runge-Kutta scheme with local time stepping,
multigrid, and a domain decomposition scheme for parallel computing. For further details on the spatial dis-
cretization and flow solution, see Aftosmis et al. [2,1] and Berger et al. [5].

4. Gradient computation

The design variables that appear directly in Eq. (4) involve parameters that do not change the computa-
tional domain, such as the Mach number, angle of attack, and side-slip angle. The influence of shape design
variables on the residuals in Eq. (4) is implicit via the computational mesh M:

M = fIT(X)] )
where T denotes a triangulation of the wetted surface. In the following sections, we present the linearization of
the residual equations and the objective function to obtain the gradient.

4.1. Discrete adjoint and flow-sensitivity methods

The gradient of the discrete objective function 7 (X M, é) with respect to a design variable X is given by

d7 0J g oM oT A 8J dQ
O X Tl oF X T a0 dX (10)
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where both 8.7 /0M and 0.7 /00 are row vectors. The evaluation of the term dQ/dX, referred to as the flow

sensitivities, is obtained by combining Egs. (4) and (9), and differentiating with respect to the design variables
oR d0 aﬁ+aﬁaﬂaf (a1
00 dx 0X oM oT oX

We assume that the implicit function Q(X) is sufficiently smooth, and note that dR/dX = 0 because Eq. (2)

holds for any design variable. The direct, or flow-sensitivity, method results from solving Eq. (11) for the flow

sensitivities dQ/dX and using these values in Eq. (10) to obtain the gradient.

The adjoint equation is obtained by combining Eqgs. (11) and (10) and defining the following intermediate
problem:

R - VA
o0 v o0 12)

where the vector 1} represents the adjoint variables. The corresponding expression for the gradient is given by

a7 _og ogeiier [k o oii oF

(13)

dX X ' om o oX X ' oM oT oX
A B

The adjoint method is advantageous for problems with many design variables and few objective functions,
because Eq. (12) is independent of the design variables.

The solution algorithm for the flow-sensitivity and adjoint equations leverages the Runge-Kutta time-
marching scheme and the parallel multigrid method of the flow solver. The algorithm is implemented using
the duality-preserving approach [14], such that the asymptotic convergence rate of the flow, flow-sensitivity,
and adjoint solvers should be identical. The matrix—vector products associated with the flow-Jacobian matrix,
left side of Egs. (11) and (12), are computed on-the-fly using a two-pass strategy over the faces of the mesh.
This ensures that the memory usage of the flow-sensitivity and adjoint solvers is equivalent to that of the flow
solver.

The flow-Jacobian matrix, as well as the term 0.7/ aé in Eq. (12), are derived by hand. The limiter function
is treated as a constant in the linearization. We find that the effect of this simplification is small on gradient
accuracy and convergence characteristics of the adjoint and flow-sensitivity solvers in transonic and low super-
sonic flow [32,31]. We discuss this issue further in the Results section for supersonic and hypersonic flows. The
discretization and linearization of the objective function is consistent with the implementation of the wall-
boundary condition in the flow equations, Eq. (4). We use the reconstructed pressure value in conjunction with
either the agglomerated surface normal or sub-cell geometry to evaluate the objective function.

In terms of CPU time per iteration, the cost of the adjoint and flow-sensitivity solvers is about 15% greater
than the flow solver. This is due to the repeated evaluations of the matrix—vector products, which involve more
arithmetic operations relative to the flow solver, but some computational savings are obtained by pre-comput-
ing and storing the limiter and time-step values [31,30]. In practice, it is sufficient to reduce the residuals of the
adjoint and flow-sensitivity equations by four orders of magnitude to obtain reliable gradients, and conse-
quently, the overall cost of solving these equations is usually less than a flow solution.

The computation of partial derivative terms 0.7 /0X and oR /0X in Eq. (13) is straightforward, because these
terms do not involve derivatives of the surface shape. The remaining partial derivative terms in Eq. (13),
labeled as A and B, represent the differentiation of the objective function and residual equations with respect
to design variables that alter the surface shape. We discuss the computation of these terms in the next section.

4.2. Computation of shape sensitivities
An important feature of the cut-cell Cartesian approach is that there is no prescribed connectivity between

the surface triangulation and the volume mesh. This feature separates the tasks of geometry modeling and sur-
face triangulation from those of volume mesh generation. Moreover, the computation of shape sensitivities
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associated with the vertices of the surface triangulation, 37 /0X in Eq. (13), is decoupled from the volume mesh
sensitivities, 0M /0T, which include the linearization of the Cartesian-face areas and centroids, volume cen-
troids and wall normals. Consider the linearization of the residual equations (Eq. (5)):

R, o(hS) OH
&—Z[H- e —&-&mS}j (14)

JeVi

where the linearization of the flux function involves the reconstruction of the flow solution to the cell face. For
example, the linearization of Eq. (6) for the left state is given by

aUL o aVU, adL
o - o(a G e vugy) 13)

The mesh sensitivities required in the evaluation of Egs. (14) and (15), such as dd, /0X and On/0X, are ob-
tained from the linearization of the mesh generator. These terms are non-zero only in the cut-cells and the crux
in their evaluation is the linearization of the pierce points that form the triangle- and face-polygons described
in Section 3. Referring to Eq. (7), this linearization is given by

oD o aV() 6V1 aV() Os
X S(W‘W)“‘]“VO)& (16)

An advantage of this formulation is that the dependence of pierce-point sensitivities on the surface triangula-
tion in Eq. (16) is determined on-the-fly for each instance of the surface geometry. Put another way, there is no
requirement for a one-to-one triangle mapping as the surface geometry changes.

Fig. 4 shows an example linearization of the face centroid locations for the Cartesian faces of a cut-cell. The
surface triangulation contains a single vertex (V;) with a non-zero shape sensitivity, denoted by a dashed vec-
tor. The resulting sensitivities of the face centroids are denoted by solid vectors. Note that “motion” of the
face centroids is constrained to the plane of the face. This contrasts with mesh-perturbation approaches for
body-fitted meshes, where the cell faces are bound to the vertices of the triangulation and hence are “con-
vected” with the vertices as they move.

The sensitivity of agglomerated wall normals is obtained via a direct linearization of Eq. (8). This is based
on the observation that the geometric closure of a cut-cell should be satisfied for any shape perturbation. The
flow-solution gradient, VU, in Eq. (15) involves the linearization of the least-squares procedure based on
Cholesky factorization. As a result, a perturbation of the surface shape influences the residual sensitivities
not only in the cut-cells, but also in their first and second nearest-neighbors. Overall, the linearization of
the residual equations is computed in parallel for each design variable and reuses the data structures of the
mesh generator and flow solver. The CPU time requirements are minimal. The evaluation of mesh sensitivities
involves simple algebraic expressions, e.g. Eq. (16), and the residual sensitivity vector, Eq. (14), is non-zero

Fig. 4. Example sensitivity of face centroid locations (solid vectors) to a shape perturbation of vertex V; of the surface triangulation
(dashed vector). Sensitivities are lengthened by a factor of three for visualization.
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only in the near-body cells. Hence, in a domain with O(N?) cells, the work associated with the computation of
residual sensitivities is proportional to O(N?).

5. Verification studies

We present two verification studies for the adjoint and flow-sensitivity methods. In the first problem, we
investigate the convergence of the gradient error for design variables that do not alter the boundary shape.
This establishes a benchmark for the second problem, where we examine the accuracy of gradients for shape
design variables. In both problems, we use second-order accurate spatial discretization without limiters, i.e.,
the slope limiter in Eq. (6) is unity. The flow, flow-sensitivity, and adjoint equations are converged 12 orders of
magnitude and the sub-cell wall boundary conditions are used.

5.1. Supersonic vortex model problem

To verify the implementation of the adjoint and flow-sensitivity methods, we investigate the error conver-
gence rate of a representative objective function and its gradient on a model problem with a known analytic
solution. The problem involves isentropic flow between concentric circular arcs at supersonic conditions as
shown in Fig. 5a. The exact solution is given by

p=p1~{1 +%Mlg[l B (;)2] }-,‘1
P

u:a,-M,-(ﬁ) sin 0, v:—a,-M,-(E) cosl, p==p’ (17)
r r i

wherea; =p,=1,p,=1/y,y=14, M; =2.25,r, =1, and r, = 1.382. As objective function, we use the inte-
gral of pressure along the outer arc, which is similar to the common lift and drag boundary integrals
J = / Cpdi =", (18)
0 20
We compute the objective function gradient and the sensitivities of the flow solution with respect to the inlet
Mach number, M;. Straightforward differentiation of Egs. (17) and (18) with respect to M, gives the exact solu-
tion for the gradient and flow sensitivities. We use the exact solution to specify Dirichlet inlet and outlet
boundary conditions for the solution of the flow, flow-sensitivity, and adjoint equations. The problem is
solved on a sequence of five nested Cartesian meshes. The coarsest mesh contains 70 cells with a cell-size
of 0.1192 for the regular, hexahedral cells. We emphasize that although the selected design variable does
not alter the shape of the boundary (terms A and B in Eq. (13) are zero), the boundary discretization changes
non-smoothly during mesh refinement.
Before presenting error convergence results, we briefly consider the flow-sensitivity and adjoint solutions
shown in Fig. 6 to provide insight into their behavior and physical interpretation. In Fig. 6a, the gradient

———

Outflow ]

(a) Problem setup (b) Example mesh (c) Pressure contours

Fig. 5. Supersonic vortex model problem (M; = 2.25, r;, = 1, and r, = 1.382).
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of density with respect to the inlet Mach number, 0p/0M;, varies directly with radius and is similar to the
pressure field shown in Fig. Sc. The gradient vanishes on the inner arc, because density is independent of
Mach number on this boundary. Fig. 6b shows the adjoint solution for the continuity equation. The non-
linear variations of the adjoint field correspond to the propagation of point-source mass perturbations,
which include interactions with the inner boundary, for an objective function defined by Eq. (18) along
the outer arc. This is clearly seen at the outflow boundary of the duct where the adjoint variable vanishes
due to the supersonic nature of the flow. Moreover, the adjoint variable is zero in a triangular region
upstream of the outflow boundary. This shows that perturbations originating past a certain location on
the inner arc, which is a function of the local Mach angle, cannot influence an objective function that
is defined only on the outer arc. Lastly, an important observation regarding Fig. 6 is the smooth behavior
of both the flow-sensitivity and adjoint solutions in the cut-cell boundary, with no visible irregularities due
to the cut-cells.

Fig. 7 summarizes the results of the error convergence study. Fig. 7a shows the error convergence rates in
the L, norm of density and its gradient with respect to the inlet Mach number. The error convergence rate of
the objective function and its gradient is shown in Fig. 7b. The adjoint and flow-sensitivity methods compute
identical gradients to round-off error and we display the results obtained via flow sensitivities. The asymptotic
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Fig. 8. Near-body mesh and pressure contours for the Joukowski airfoil at M., = 0.3 and « = 1°. Airfoil is rotated about its trailing edge.

convergence rate of errors, which is measured over the three finest meshes, is just slightly over two. These
results are consistent with the second-order spatial discretization of the Euler equations and objective func-
tion, thereby verifying the accuracy of the linearization and the convergence of these methods to the contin-
uous problem. Furthermore, the convergence of the objective function and its gradient is not adversely
affected by the irregular cells of the domain.

5.2. Shape sensitivities for the Joukowski airfoil

The purpose of this verification test is to study the convergence of gradients for design variables that alter
the shape of the boundary. We consider a smooth subsonic flow over the Joukowski airfoil* and we choose lift
as the objective function. The freestream Mach number is 0.3 and the angle of attack is 1°. We investigate the
sensitivity of lift to the angle of attack using two equivalent approaches. First, we consider the influence of the
angle of attack via a change in the farfield boundary conditions. This approach is similar to the supersonic
vortex problem, because freestream perturbations, such as the Mach number and the angle of attack, do
not alter the relationship between the mesh and the airfoil. We contrast this with an angle of attack change
implemented via a rigid-body rotation of the airfoil about its trailing edge within a fixed mesh. The mesh-
refinement study is performed on a sequence of five nested Cartesian meshes consisting of 3258, 12,718,
50,141, 193,919, and 763,027 cells for each airfoil orientation. The distance to the farfield boundary is 25
chords. The near-body mesh and the pressure contours of the flow solution are shown in Fig. 8 for the sec-
ond-coarsest mesh of the refinement study.

The results are summarized in Fig. 9. We observe that the objective function and its gradient are converging
to essentially the same value. This is in agreement with incompressible flow theory for thin airfoils, which pre-
dicts a linear variation of lift with the angle of attack. Moreover, note that the differences between the farfield
and rotated airfoil cases for both the objective function and its gradient are decreasing as the mesh is refined.
These differences are plotted in Fig. 10 with respect to a normalized cell-size, /. Regression analysis of the data
in Fig. 10 reveals that the rate of convergence for the differences in lift is 2.3, which is consistent with second-
order spatial discretization. The differences in gradient values, however, vanish at a slower rate. The conver-
gence rate for the gradient is 1.3 — roughly first-order. This reduction in convergence rate is a direct
consequence of the noise observed in the computation of the objective function. Unlike the supersonic vortex
problem, a perturbation of the angle of attack via airfoil rotation modifies the cut-cell boundary and intro-
duces an error in the objective function proportional to second-order spatial discretization. Nevertheless,
the agreement between the farfield and rotated airfoil cases is good over the range of the mesh-refinement

2 The airfoil is defined using conformal mapping z = Z + 1/Z in the complex Z-plane for a circle centered at (—0.08, 0) with radius of
1.08. The airfoil chord is normalized to unity.
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Fig. 9. Convergence study of lift and its gradient due to a change in the angle of attack: implemented via the farfield boundary (“Farfield”)
and airfoil rotation (“‘Shape”).
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Fig. 10. Convergence of errors for lift and its gradient. Error is measured as the difference between the farfield and rotated airfoil cases.
Slope of linear regression lines is —2.2 for lift and —1.3 for its gradient.

study. For example, even on the second-coarsest mesh with roughly 12,000 cells, the gradients are within 2% of
the fine-mesh values. Consequently, we expect such gradients to provide reliable descent directions for an opti-
mization algorithm. In the next section, we investigate this hypothesis for several shape-optimization
problems.

6. Optimization examples

We present two design examples to demonstrate the effectiveness of the proposed method for aerodynamic
shape optimization problems. The optimization problems are solved using the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) quasi-Newton method in conjunction with a backtracking line-search [11]. At each step of the
line-search, the objective function value and gradient are required to construct a local cubic interpolant. We
use the adjoint method for all gradient computations. All computations are performed on Intel 1.6 GHz [A-64
Itanium 2 processors.
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6.1. Inverse design

Two inverse design problems are considered for an isolated wing in subsonic and transonic flow. We specify
an attainable target pressure distribution based on a known geometry and investigate the convergence char-
acteristics of an optimization that drives an arbitrary input geometry to this target. The effect of limiters on the
optimization is examined.

The first example considers subsonic flow at a freestream Mach number of 0.56 and an angle of attack of
3.06°. The subsonic flow does not require the use of limiters (¢ = 1 in Eq. (6)), which provides an exact lin-
earization of the flow equations. The flow is smooth everywhere, except for a small region at the sharp trailing
edge. The target pressure distribution corresponds to a rectangular wing with an airfoil shape that is based on
the ONERA M6 airfoil section [38]. A cubic B-spline curve is used to parameterize the airfoil shape, as shown
in Fig. 11. This example allows only vertical displacements of the B-spline control points. Note the symmetric
coupling of the two control points at the leading edge in Fig. 11, resulting in an optimization problem with
nine design variables. The wing planform (aspect ratio of 3.8) is held fixed during the optimization. The shape
sensitivities of the surface triangulation, i.e. the term 07 /0X in Eq. (13), are obtained via an analytic linear-
ization of the wing geometry constructors, which include the B-spline curve, linear lofting, and the wing-tip
geometry.

The objective function is formulated as a least-squares problem

1 nv
T=53 (G- (19)
i=1

where the target pressure coefficient, C, is specified at each vertex of the wing triangulation and nv represents
the total number of vertices. The initial pressure distribution is obtained by positioning the design variables to
approximate the RAE 2822 airfoil section.

Convergence of the flow and adjoint equations is achieved using 32 processors and a 4-level W-cycle mul-
tigrid with one pre- and one post-smoothing pass. The computational mesh contains roughly 900,000 cells.
Fig. 12 shows typical converge histories of the flow and adjoint solvers in terms of multigrid cycles for density
residuals. Full-multigrid startup is used, which corresponds to roughly the first 40 multigrid cycles in Fig. 12.
The asymptotic convergence rate of the two solvers is similar. The small difference in the asymptotic slopes is
due to omitting an update of the flow-solution gradient prior to residual restriction, which is done to reduce
overall wall-clock time [31]. Note that the asymptotic slopes are reached in just 100 multigrid cycles. In terms
of the wall-clock time, the convergence of the flow and adjoint solvers is also similar and requires roughly
4 min for each solver.

The accuracy of the computed gradients is presented in Table 1 for the upper surface design variables (see
Fig. 11). We compare the adjoint gradient values with centered-difference approximations for the initial wing

0.05

-0.05

Fig. 11. B-spline control points (symbols) and design variables (labels) for ONERA M6 target airfoil shape.
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Fig. 12. Example convergence histories for the flow and adjoint solvers using a 4-level W-cycle multigrid (MG), subsonic inverse design
M., = 0.56 and o = 3.06°.

Table 1

Gradient accuracy for subsonic inverse design (upper surface design variables)

Design variable Finite-difference (x10%) Adjoint (% difference)
1 29187 1.7

2 1.6381 1.4

3 3.0351 -0.3

4 2.0301 -39

5 —7.1752 0.06

geometry. The agreement in Table 1 is good. We attribute the small differences to changes in the volume mesh
discretization due to the finite-difference stepsize. The appearance and disappearance of cut-cells is likely for
any finite stepsize. This issue could be avoided by the use of the complex-step method [25]; however, we have
not implemented this method due to efficiency reasons and the requirement for access to all source code, which
is problematic in a CAD-based design environment.

The optimization results are summarized in Fig. 13. The initial, target, and final pressure distributions near
the root region of the wing are shown in Fig. 13a. The corresponding airfoil sections are shown in Fig. 13b.
The optimization converges to the target wing shape, and the final and target pressure distributions match to
nearly double-precision machine accuracy. This is confirmed in Fig. 14, which summarizes the convergence
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(a) Root section pressure distributions (b) Airfoil sections

Fig. 13. Subsonic inverse design problem (M., = 0.56 and o = 3.06°).
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Fig. 14. Optimization convergence history (subsonic inverse design problem).

history of the objective function and gradient. The L, norm of the gradient is reduced to single-precision
machine accuracy in 36 flow and gradient evaluations. Note the rapid convergence near the optimal solution.
This indicates that the BFGS algorithm obtained an accurate estimate of the Hessian matrix using the com-
puted objective function and gradient values.

Next, we consider a more challenging problem of a swept-tapered wing in transonic flow. The target pres-
sure distribution corresponds to the ONERA M6 wing at a freestream Mach number of 0.84 and an angle of
attack of 3.06°. The design variables are the same as in the subsonic case, see Fig. 11, and 